
Building for the future. Better, faster, everywhere.

Building for the future. Better, faster, everywhere.

6 – 7 . APRIL ATLANTA, GA, USA

Building for the future. Better, faster, everywhere.

DataFlex for WordPress (DF4WP)
Mike Peat

Unicorn InterGlobal

Building for the future. Better, faster, everywhere.

WordPress
Originally just an open source blogging tool, it has become the most
widely deployed content management software on the Web:

• Of all the sites on the Web, 45% use some form of content
management system

• Of those, almost 60% use WordPress (source: w3techs)
• Hence over 25% of all (public) web sites use WordPress (~75

million sites - source: ManageWP)
• By comparison, the next two most popular content management

systems - Joomla and Drupal - are used by 2.7% and 2.2% of sites
respectively

http://w3techs.com/technologies/overview/content_management/all/
https://managewp.com/14-surprising-statistics-about-wordpress-usage

Building for the future. Better, faster, everywhere.

WordPress as a platform
• WordPress has 44,000+ plugins available for it,

allowing it to be customised for all sorts of uses,
from eCommerce, to appointment scheduling, to
image galleries… almost anything

• Together they make WordPress effectively a
platform in its own right

• That is a platform we can now deliver applications
for… DataFlex everywhere!

Building for the future. Better, faster, everywhere.

DF4WP Plugin
• The DF4WP plugin allows you to integrate your

DataFlex web applications in a WordPress site
(requires DF 18.2+)

• Existing vertical or horizontal apps can be quickly
modified for integration (without compromising
their existing functionality)

• New applications can be written to order

Building for the future. Better, faster, everywhere.

What is it exactly?
DF4WP has two parts to it:
1. The actual WordPress plugin, made up

of a small set of PHP, JavaScript and CSS
files

2. A DataFlex library workspace containing
classes modified to work better under
WordPress

Building for the future. Better, faster, everywhere.

The Plugin
The plugin itself is delivered as a zip file
containing all that is required on the
WordPress side (dataflex4wordpress.zip)
WordPress expects plugins to be in zip
format, so you should not extract those files,
but upload the zip file as-is to the target
WordPress site

Building for the future. Better, faster, everywhere.

Installing the Plugin
You must have a login for the site with
Administrator (or "Super Admin") rights

On the Administrator dashboard, in the
left-hand menu, go to "Plugins" → "Add
New"

Click "Upload Plugin", then "Choose File",
selecting the dataflex4wordpress.zip file

Building for the future. Better, faster, everywhere.

Installing the Plugin

Click "Install Now" then on the resulting
page, click "Activate Plugin"

You should now see a "DataFlex" entry
appearing at the bottom of the
dashboard left-menu:

Install Demo

Building for the future. Better, faster, everywhere.

Configuring the Plugin
Hovering over, or clicking, the "DataFlex"
entry on that left menu will show two
sub-items:
● Dashboard
● Help

The Dashboard is where configuration
entries are made

Building for the future. Better, faster, everywhere.

Configuring the Plugin
There are only three items to configure:

• Path to the default DataFlex WebApp
• Default theme (to preload)
• Secret (32 char key for data passed to the

WebApp)
The Path and Theme are simply defaults - they can
be overridden - but the Secret is important; if left
blank one will be generated

Building for the future. Better, faster, everywhere.

Configuring the Plugin

Clicking the "Save Changes" button will
update the plugin's properties and you
are ready to go!

Configure Demo

Building for the future. Better, faster, everywhere.

Embedding a WebApp (or View)

Create a new WordPress page: Dashboard →
Pages → Add New

Give it a title
Enter a "shortcode": [df4wp-webapp]
Add settings to the shortcode
Click the "Publish" button, then the "View page"
link

Building for the future. Better, faster, everywhere.

Shortcode settings
• view="oViewObjectName" (embed a view)
• height=999 (in pixels for the app/view)
• apppath="/path/to/the/webapp"
• theme="ThemeToPreload"
• params="prop=val|prop=val|prop=val"
• dfr=TRUE (if you need the DataFlex Reports

previewer web components loaded)

Building for the future. Better, faster, everywhere.

The "params" setting
Allows you to dynamically set Web properties of
the embedded object (app or view)

Pipe "|" separated list of property-value pairs:
"property=value|property=value"

Two new web properties added for views:
psTheme - allow views to be themed
pbShowToolBars - show the command bars

Embedding Demo

Building for the future. Better, faster, everywhere.

Customising for WordPress

Use the DF4WP library in your Workspace
Several classes should then be changed:

• cWebApp ⇒ cWPWebApp
• cWebView ⇒ cWPWebView
• cWebModalDialog ⇒ cWPWebModalDialog
• cWebImage ⇒ cWPWebImage
• cWebColumnImage ⇒ cWPWebColumnImage

The appropriate Use statements should also be changed

Building for the future. Better, faster, everywhere.

Customising for WordPress

These modifications should not change
the behaviour of the application outside
WordPress

You can maintain a single code-base for
your app for stand-alone deployment or
embedding within a WordPress site

Building for the future. Better, faster, everywhere.

Customising for WordPress
A new WebApp property - pbUseWPLogin -
can be set to allow your application to use
WordPress's logged-in state for the user
rather than the DataFlex framework login

This is a developer choice: should the user
have to log in at all? If so, should it be to
WordPress or specifically your application?

Building for the future. Better, faster, everywhere.

Customising for WordPress
The 32 character "secret" we created in the
plugin configuration needs to be known to
the application

Set psWPEncryptSecret to its value
Either in the source code or from a DB field
New boolean WebApp function:
InWordPress

Building for the future. Better, faster, everywhere.

Data passed from WordPress
To support this, there is also a new function
of the WebApp: GetWPInfo

Pass it the (string) name of the data you
want and it will return the value

Data is passed AES-256 encrypted from
WordPress with checking on an MD5 hash

Building for the future. Better, faster, everywhere.

Data passed from WordPress
• sWPTimeSent
• bWPUserLoggedIn
• sDF4WP_Parameters
• sWPView
• sWPSiteAddress
• iWPUserID
• sWPUserDispName

• sWPUserEMail
• sWPUserLogin
• iWPUserLevel
• sWPUserFirstName
• sWPUserLastName
• sWPLoginURL
• sWPHomeURL

Building for the future. Better, faster, everywhere.

Data passed from WordPress
To access those values we can code, for
instance:

Get WPInfo of ghoWebApp "iWPUserLevel" to var

Building for the future. Better, faster, everywhere.

Extending that information

If you have an understanding of
WordPress's functionality

And you are not afraid of a little PHP code

You can freely add to that passed data

https://codex.wordpress.org/Function_Reference
https://codex.wordpress.org/Function_Reference

Building for the future. Better, faster, everywhere.

Extending that information

In the WordPress Administrator
Dashboard

Under "Plugins" on the left-menu
There is an "Editor" option
Select the DataFlex4Wordpress plugin
Then the df4wp-page.php file

Building for the future. Better, faster, everywhere.

Extending that information

Scroll down to around line 60:
 …

$info .= chr(31) . 'sWPUserLastName=' . $current_user->user_lastname;
$info .= chr(31) . 'sWPLoginURL=' . wp_login_url();
$info .= chr(31) . 'sWPHomeURL=' . home_url();

Add lines to that, for instance:
$info .= chr(31) . 'sWPTheme=' . wp_get_theme()['Name'];
$info .= chr(31) . 'sWPThemeVer=' . wp_get_theme()['Version'];

Building for the future. Better, faster, everywhere.

The apppath setting
The path to your DataFlex web app can be set either in the
plugin's settings (a default) or specifically in the shortcode via the
apppath setting
That path should start with a slash - / - but if it doesn't one will be
added
That path is to a virtual directory on the WordPress server
However if your application is on a different server - which it
would need to be if the WordPress server is a Unix or Linux
machine for instance - you can use the full path:
"//DNSName.Or.IP.Address/path/to/webapp"

Building for the future. Better, faster, everywhere.

Cross-Origin Resource Sharing

If you do require to load your web app from a different
server, then that server will have to be set up for
Cross-Origin Resource Sharing (CORS)

See:
http://www.unicorninterglobal.com/Company-White-Pap
ers-Cross-Origin-Resource-Sharing-CORS-816

http://www.unicorninterglobal.com/Company-White-Papers-Cross-Origin-Resource-Sharing-CORS-816
http://www.unicorninterglobal.com/Company-White-Papers-Cross-Origin-Resource-Sharing-CORS-816
http://www.unicorninterglobal.com/Company-White-Papers-Cross-Origin-Resource-Sharing-CORS-816

Building for the future. Better, faster, everywhere.

Cross-Origin Resource Sharing

The first thing to know is that CORS is done on the WebApp
machine - not the WordPress machine
You have to configure it to respond to a "preflight" HTTP
OPTIONS (as opposed to GET or POST) request from the user's
browser
That will ask if it is prepared to allow access for a page loaded
from the WordPress server
It has to respond with a series of "Access-Control-Allow-..."
HTTP Headers that will permit access

Building for the future. Better, faster, everywhere.

Cross-Origin Resource Sharing

In IIS Manager, in the "Features View" for your WebApp
virtual directory, you use the "HTTP Response Headers"
option to "Add" four new headers:
● Access-Control-Allow-Origin - set to the WordPress

hostname or IP address
● Access-Control-Allow-Methods - set to GET, POST
● Access-Control-Allow-Headers - set to content-type
● Access-Control-Allow-Credentials - set to true

Building for the future. Better, faster, everywhere.

Cross-Origin Resource Sharing

Then you should rearrange the Handler Mappings to ensure
the Options Handler grabs the request first:
Use the IIS "Handler Mappings" feature and in that click
the "View Ordered List" link
Locate and select the OPTIONSVerbHandler (probably
near the bottom), then click the "Move Up" link (it will ask if
you really want to reorder the list - say Yes) until it is at the
top

Building for the future. Better, faster, everywhere.

Cross-Origin Resource Sharing

You should then be able to embed your web app in
WordPress on the target machine

To embed a given web app in WordPress sites on more
than one server, it gets trickier, because using a wildcard
("*") in Allow-Origin is incompatible with also using
Allow-Credentials - which WebApp needs for its cookies, but
it can be done

Cross Site Demo

Building for the future. Better, faster, everywhere.

Thank you!

Any Questions?

